Package: RTCC (via r-universe)

September 7, 2024

Type Package

Title Detecting Trait Clustering in Environmental Gradients

Version 0.1.1

Author Mateu Menendez-Serra, Vicente J. Ontiveros, Emilio O. Casamayor, David Alonso

Maintainer Mateu Menendez-Serra <mateu.menendez@ceab.csic.es>

Description The Randomized Trait Community Clustering method (Triado-Margarit et al., 2019, <doi:10.1038/s41396-019-0454-4>) is a statistical approach which allows to determine whether if an observed trait clustering pattern is related to an increasing environmental constrain. The method 1) determines whether exists or not a trait clustering on the sampled communities and 2) assess if the observed clustering signal is related or not to an increasing environmental constrain along an environmental gradient. Also, when the effect of the environmental gradient is not linear, allows to determine consistent thresholds on the community assembly based on trait-values.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Imports matrixStats, vegan, Rcpp

Suggests testthat, knitr, rmarkdown

LinkingTo testthat, Rcpp

NeedsCompilation yes

Depends R (>= 3.5.0)

Date/Publication 2020-06-12 17:50:03 UTC

Repository https://mateumenendez.r-universe.dev

RemoteUrl https://github.com/cran/RTCC

RemoteRef HEAD

RemoteSha 028d47d02e698ac9e074f0fd70aa60252e8ae298

2 group_information

Contents

	group_information	
	rtcc3	
	table_presence_absence .	
dex		13
groun	n information Gen	mic data linked to saline lagoons.

Description

A dataset containing genomic data of 544 genomes that matched 16s rRNA data from saline lagoons of the Monegros desert area.

Usage

Index

group_information

Format

```
A data frame with 544 rows and 14 variables:
```

genome Genome IMG code Genome_Size Genome size GC_perc GC percentage Coding_base_perc Conding base percentage CDS_perc CDS percentage RNA_perc RNA percentage **rRNA_count** rRNA count **Transporter_perc** Transporter proteins percentage Signal_peptide_perc Signal peptide percentage

Transmembrane_perc Transmembrane proteins percentage

Gene_Count Gene count

min_env Minimum environmental value where the organism has been observed max_env Minimum environmental value where the organism has been observed rel_abundance Relative abundance of the organism on the metacommunity

metadata 3

Source

Triadó-Margarit, X., Capitán, J.A., Menéndez-Serra, M. et al. A Randomized Trait Community Clustering approach to unveil consistent environmental thresholds in community assembly. ISME J 13, 2681–2689 (2019).

metadata

Salinity values of saline lagoons.

Description

A dataset containing salinity values of 136 lagoons on the Monegros desert area.

Usage

metadata

Format

A data frame with 136 rows and 2 variables:

sample_ID Sample internal code
salinity Sample salinity value

Source

Triadó-Margarit, X., Capitán, J.A., Menéndez-Serra, M. et al. A Randomized Trait Community Clustering approach to unveil consistent environmental thresholds in community assembly. ISME J 13, 2681–2689.2019.

RTCC

RTCC: Detecting trait clustering in environmental gradients with the Randomized Trait Community Clustering method

Description

A set of functions which allows to determine if the observed traits present clustering/overdispersion patterns on the observed samples, and if so, to stablish if the observed pattern is linked to the effect of an environmental gradient.

4 rtcc1

Details

The study of phenotypic similarities and differences within species along environmental gradients might be used as a powerful tool complementing taxon-based approaches when assessing the contribution of stochastic and deterministic processes in community assembly. For this, this package allows an easy implementation of a method for detecting clustering/overdispersion patterns along an environmental gradient (Triado-Margarit et al., 2019). A first function assesses if the observed traits exhibit a clustering/overdispersion pattern on the tested samples. If positive, two subsequent functions determine whether the observed pattern is linked to the effect of an environmental varible and its statistical significance.

Data entry

The data consists on presence-absence observations along a measured environmental gradient and trait quantitative information of the observed organisms.

References

Triado-Margarit, X., Capitan, J.A., Menendez-Serra, M. et al. (2019) A Randomized Trait Community Clustering approach to unveil consistent environmental thresholds in community assembly. *ISME J* 13, 2681–2689 . https://doi.org/10.1038/s41396-019-0454-4

	rtcc1	Trait selection	
--	-------	-----------------	--

Description

This function determines whether the selected traits exhibit or not a clustering/overdispersion signal on the tested samples. For each trait, compares the observed Mean Pairwise Distance (MPD) of each sample against a distribution of synthetic communities MPDs obtained by a randomization test. Each synthetic community is build maintaining the original sample richness and randomly selecting organisms form the global pool.

Usage

```
rtcc1(table1, table2, table3, traits_columns, repetitions)
```

Arguments

table1	A data frame containing organisms names on the first column and its trait values on the consecutive ones. It also has to contain two columns with the maximum and the minimum values of the tested environmental variable where the organisms have been observed.
table2	A presence-absence observations table with the organisms names on the first column and the sample names as consecutive colnames.
table3	A dataframe containing sample names on the first column and environmental parameters on the consecutive ones.
traits_columns	Table 1 column numbers where different trait values appear.
repetitions	Number of simulated synthetic communities distributions.

rtcc2 5

Value

The function returns a dataframe with trait names as colnames and the p-value distribution of the different traits.

Examples

```
data(group_information)
data(table_presence_absence)
data(metadata)
rtcc1(group_information, table_presence_absence, metadata, 2:11, 100)
```

rtcc2

Clustering signal along an environmental gradient

Description

For a given trait, this function determines whether the observed trait clustering/overdispersion on the metacommunity is linked to an environmental gradient. For this, it sequentially remove samples in decreasing order of the environmental variable and computes at each step the remaining metacommunity h-index. This index is based on the percentage of samples on a metacommunity presenting significant trait clustering/overdispersion.

Usage

```
rtcc2(
  table1,
  table2,
  table3,
  species_abundances,
  trait_col_number,
  min_env_col,
  max_env_col,
  env_var_col,
  h_iteration,
  repetitions,
  model
)
```

Arguments

table1

A data frame containing organisms names on the first column and its trait values on the consecutive ones. It also has to contain two columns with the maximum and the minimum values of the tested environmental variable where the organisms have been observed.

6 rtcc2

table2 A presence-absence observations table with the organisms names on the first

column and the sample names as consecutive colnames.

table3 A dataframe containing sample names on the first column and environmental

parameters on the consecutive ones.

species_abundances

A vector containing the relative abundance of the organisms on the whole data set on the same order as appear on Table 1.

trait_col_number

Table 1 column number of the tested trait.

min_env_col Table 1 column number indicating the minimum value of the environmental

variable were each organism has been observed.

max_env_col Table 1 column number indicating the maximum value of the environmental

variable were each organism has been observed.

env_var_col Table 2 column number indicating the tested environmental variable.

h_iteration Number of h-index calculations for computing a confidence interval.

repetitions Number of simulated synthetic communities distributions.

model Model selection. All models build synthetic communities based on the organisms richness of the observed communities.

- Model 1: organism are selected randomly from the global pool. - Model 2: organism are selected randomly with a probability based on its relative abundance on the global pool. - Model 3: organism are selected randomly, but only those whose environmental range includes the value of the simulated community are elegible. - Model 4: organism are selected randomly, but only those whose environmental range includes the value of the simulated community are elegible and the selection probability is based on its relative abundance on the global pool.

Value

The function returns a dataframe with the maximum of the environmental variable on the remaining metacommunity after the sequential removal, h-index calculation for each environmental value, and its confidence standard deviation.

Examples

```
data(group_information)
data(table_presence_absence)
data(metadata)
rtcc2(group_information, table_presence_absence, metadata, group_information$sums,
9, 12, 13, 2, 100, 100, model = 1)
```

rtcc3

rtcc3

Clustering signal significance.

Description

For a given trait and environmental variable, this function creates a null model of the clustering/overdispersion pattern in order to test if the observed pattern statistically differs from the expected by random. For this, it sequentially remove random samples from the metacommunity and computes at each step the remaining metacommunity h-index. This index is based on the percentage of samples on a metacommunity presenting significant trait clustering/overdispersion. After h iterations, computes a 95 obtained h-index for each point of the environmental gradient.

Usage

```
rtcc3(
  table1,
  table2,
  table3,
  species_abundances,
  trait_col_number,
  min_env_col,
  max_env_col,
  env_var_col,
  h_iteration,
  repetitions,
  model
)
```

Arguments

table1

A data frame containing organisms names on the first column and its trait values on the consecutive ones. It also has to contain two columns with the maximum and the minimum values of the tested environmental variable where the organisms have been observed.

table2

A presence-absence observations table with the organisms names on the first column and the sample names as consecutive colnames.

table3

A dataframe containing sample names on the first column and environmental parameters on the consecutive ones.

species_abundances

A vector containing the relative abundance of the organisms on the whole data set on the same order as appear on Table 1.

trait_col_number

Table 1 column number of the tested trait.

min_env_col

Table 1 column number indicating the minimum value of the environmental variable were each organism has been observed.

max_env_col Table 1 column number indicating the maximum value of the environmental variable were each organism has been observed.

env_var_col Table 2 column number indicating the tested environmental variable.

h_iteration Number of h-index calculations for computing a confidence interval.

repetitions Number of simulated synthetic communities distributions.

Model selection. All models build synthetic communities based on the organisms richness of the observed communities.

- Model 1: organism are selected randomly from the global pool. - Model 2: organism are selected randomly with a probability based on its relative abundance on the global pool. - Model 3: organism are selected randomly, but only those whose environmental range includes the value of the simulated community are elegible. - Model 4: organism are selected randomly, but only those whose environmental range includes the value of the simulated community are elegible and the selection probability is based on its relative abundance on the global pool.

Value

model

The function returns a dataframe with the maximum value of environmental variable corresponding to the same number of samples on the ordered remova, h-index calculation for each environmental value, and the percentiles 0.025, 0.5 and 0.975 of the obtained distribution for each point (mean value and 95

Examples

```
data(group_information)
data(table_presence_absence)
data(metadata)
rtcc3(group_information, table_presence_absence, metadata, group_information$sums,
9, 12, 13, 2, 50, 20, model = 1)
```

table_presence_absence

Genome presence-absence data of 136 saline lagoons.

Description

A dataset containing presence-absence data of 544 genomes on 136 saline lagoons of the Monegros desert area.

Usage

table_presence_absence

Format

A data frame with 544 rows and 137 variables:

genome Genome IMG code

MON_10 Sample presence-absence observations

MON_100 Sample presence-absence observations

MON_101 Sample presence-absence observations

MON_103 Sample presence-absence observations

MON_104 Sample presence-absence observations

MON_106 Sample presence-absence observations

MON_107 Sample presence-absence observations

MON_108 Sample presence-absence observations

MON_109 Sample presence-absence observations

MON_11 Sample presence-absence observations

MON_110 Sample presence-absence observations

MON_111 Sample presence-absence observations

MON_112 Sample presence-absence observations

MON_113 Sample presence-absence observations

MON_114 Sample presence-absence observations

MON_116 Sample presence-absence observations

MON_117 Sample presence-absence observations

MON_118 Sample presence-absence observations

MON_119 Sample presence-absence observations

MON_12 Sample presence-absence observations

MON_120 Sample presence-absence observations

MON_122 Sample presence-absence observations

MON_123 Sample presence-absence observations

MON 124 Sample presence-absence observations

MON 125 Sample presence-absence observations

MON_126 Sample presence-absence observations

MON_127 Sample presence-absence observations

MON_128 Sample presence-absence observations

MON_129 Sample presence-absence observations

MON_13 Sample presence-absence observations

MON_130 Sample presence-absence observations

MON_131 Sample presence-absence observations

MON_133 Sample presence-absence observations

MON_134 Sample presence-absence observations

- MON_135 Sample presence-absence observations
- MON_136 Sample presence-absence observations
- MON_137 Sample presence-absence observations
- MON 138 Sample presence-absence observations
- MON_139 Sample presence-absence observations
- **MON_14** Sample presence-absence observations
- MON_140 Sample presence-absence observations
- MON_141 Sample presence-absence observations
- MON_142 Sample presence-absence observations
- MON_144 Sample presence-absence observations
- MON_145 Sample presence-absence observations
- MON_146 Sample presence-absence observations
- MON_147 Sample presence-absence observations
- MON 148 Sample presence-absence observations
- MON 15 Sample presence-absence observations
- MON_17 Sample presence-absence observations
- MON_18 Sample presence-absence observations
- MON_19 Sample presence-absence observations
- MON_2 Sample presence-absence observations
- MON_20 Sample presence-absence observations
- MON_21 Sample presence-absence observations
- MON_22 Sample presence-absence observations
- MON_23 Sample presence-absence observations
- MON_24 Sample presence-absence observations
- MON_25 Sample presence-absence observations
- MON_26 Sample presence-absence observations
- MON_27 Sample presence-absence observations
- MON_28 Sample presence-absence observations
- MON_29 Sample presence-absence observations
- MON_30 Sample presence-absence observations
- MON_31 Sample presence-absence observations
- MON_32 Sample presence-absence observations
- MON_33 Sample presence-absence observations
- MON_34 Sample presence-absence observations
- MON_35 Sample presence-absence observations
- MON_36 Sample presence-absence observations
- MON_37 Sample presence-absence observations

table_presence_absence 11

MON_38	Sample	presence-absence	observations

- MON_39 Sample presence-absence observations
- MON 4 Sample presence-absence observations
- MON_40 Sample presence-absence observations
- MON 41 Sample presence-absence observations
- MON_42 Sample presence-absence observations
- MON 43 Sample presence-absence observations
- MON_44 Sample presence-absence observations
- MON 45 Sample presence-absence observations
- MON_46 Sample presence-absence observations
- MON_47 Sample presence-absence observations
- MON_48 Sample presence-absence observations
- MON_49 Sample presence-absence observations
- MON 5 Sample presence-absence observations
- MON 50 Sample presence-absence observations
- MON 51 Sample presence-absence observations
- MON 52 Sample presence-absence observations
- MON_53 Sample presence-absence observations
- MON_54 Sample presence-absence observations
- MON_55 Sample presence-absence observations
- MON_56 Sample presence-absence observations
- MON_57 Sample presence-absence observations
- MON_58 Sample presence-absence observations
- MON_59 Sample presence-absence observations
- MON_60 Sample presence-absence observations
- MON_61 Sample presence-absence observations
- MON_62 Sample presence-absence observations
- MON_63 Sample presence-absence observations
- MON_64 Sample presence-absence observations
- MON_65 Sample presence-absence observations
- MON_66 Sample presence-absence observations
- MON_67 Sample presence-absence observations
- MON_68 Sample presence-absence observations
- MON_69 Sample presence-absence observations
- MON_7 Sample presence-absence observations
- MON_70 Sample presence-absence observations
- MON_71 Sample presence-absence observations

- MON_72 Sample presence-absence observations
- MON_73 Sample presence-absence observations
- MON_74 Sample presence-absence observations
- MON_75 Sample presence-absence observations
- MON_76 Sample presence-absence observations
- MON_77 Sample presence-absence observations
- MON_78 Sample presence-absence observations
- MON 79 Sample presence-absence observations
- MON_8 Sample presence-absence observations
- MON_80 Sample presence-absence observations
- MON_81 Sample presence-absence observations
- MON_82 Sample presence-absence observations
- MON_83 Sample presence-absence observations
- MON_84 Sample presence-absence observations
- MON_85 Sample presence-absence observations
- MON_86 Sample presence-absence observations
- MON_88 Sample presence-absence observations
- MON_9 Sample presence-absence observations
- MON_90 Sample presence-absence observations
- MON_91 Sample presence-absence observations
- MON_92 Sample presence-absence observations
- MON_93 Sample presence-absence observations
- MON_94 Sample presence-absence observations
- MON_95 Sample presence-absence observations
- MON_96 Sample presence-absence observations
- MON_97 Sample presence-absence observations
- MON_98 Sample presence-absence observations
- MON_99 Sample presence-absence observations ...

Source

Triadó-Margarit, X., Capitán, J.A., Menéndez-Serra, M. et al. A Randomized Trait Community Clustering approach to unveil consistent environmental thresholds in community assembly. ISME J 13, 2681–2689 (2019).

Index

```
* datasets
    group_information, 2
    metadata, 3
    table_presence_absence, 8
group_information, 2
metadata, 3
RTCC, 3
rtcc1, 4
rtcc2, 5
rtcc3, 7
table_presence_absence, 8
```